Tracing knowledge diffusion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracing Conceptual and Geospatial Diffusion of Knowledge

Understanding the dynamics of knowledge diffusion has profound theoretical and practical implications across a wide variety of domains, ranging from scientific disciplines to education and understanding emergent social phenomena. On the other hand, it involves many challenging issues due to the inherited complexity of knowledge diffusion. In this article, we describe a unifying framework that i...

متن کامل

Spectral Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student’s latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is also treated as a binary variable. While the BK...

متن کامل

EEG Helps Knowledge Tracing!

Knowledge tracing (KT) is widely used in Intelligent Tutoring Systems (ITS) to measure student learning. Inexpensive portable electroencephalography (EEG) devices are viable as a way to help detect a number of student mental states relevant to learning, e.g. engagement or attention. In this paper, we combine such EEG measures with KT to improve estimates of the students’ hidden knowledge state....

متن کامل

Clustered Knowledge Tracing

By learning a more distributed representation of the input space, clustering can be a powerful source of information for boosting the performance of predictive models. While such semi-supervised methods based on clustering have been applied to increase the accuracy of predictions of external tests, they have not yet been applied to improve within-tutor prediction of student responses. We use a ...

متن کامل

Deep Knowledge Tracing

Knowledge tracing—where a machine models the knowledge of a student as they interact with coursework—is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientometrics

سال: 2004

ISSN: 0138-9130

DOI: 10.1023/b:scie.0000018528.59913.48